Genomic Prediction Using Haplotype Blocks Built From High Density Marker Map

Beatriz Castro Dias Cuyabano

Main Supervisor: Guosheng Su Project Supervisor: Mogens Sandø Lund

Center for Quantitative Genetics and Genomics Graduate School of Science and Technology - Aarhus University, Denmark

December 11, 2012

• High Density Markers - Why?

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;
 - Accuracy of genomic prediction can be further increased using HD marker or re-sequence information (Meuwissen and Goddard, 2010);

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;
 - Accuracy of genomic prediction can be further increased using HD marker or re-sequence information (Meuwissen and Goddard, 2010);
 - Increasing degree of Linkage Disequilibrium (LD) between single-nucleotide polymorphism (SNP) and Quantitative Trait Loci (QTL);

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;
 - Accuracy of genomic prediction can be further increased using HD marker or re-sequence information (Meuwissen and Goddard, 2010);
 - Increasing degree of Linkage Disequilibrium (LD) between single-nucleotide polymorphism (SNP) and Quantitative Trait Loci (QTL);
 - LD phase between breeds in the 50k chip is very low;

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;
 - Accuracy of genomic prediction can be further increased using HD marker or re-sequence information (Meuwissen and Goddard, 2010);
 - Increasing degree of Linkage Disequilibrium (LD) between single-nucleotide polymorphism (SNP) and Quantitative Trait Loci (QTL);
 - LD phase between breeds in the 50k chip is very low;
 - HD maps will be very useful in genomic prediction across breeds due to the higher LD phase;

- High Density Markers Why?
 - High Density (HD) marker chip (up to $\approx 770k$ markers) is now available;
 - Accuracy of genomic prediction can be further increased using HD marker or re-sequence information (Meuwissen and Goddard, 2010);
 - Increasing degree of Linkage Disequilibrium (LD) between single-nucleotide polymorphism (SNP) and Quantitative Trait Loci (QTL);
 - LD phase between breeds in the 50k chip is very low;
 - HD maps will be very useful in genomic prediction across breeds due to the higher LD phase;
 - The challenge: genomic prediction with HD maps, using popular methods applied to low-medium density maps, have not presented significant improvement so far.

• First step: deal with the large amount of variables;

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:
 - ... 1 1 2 1 2 2 2 1 1 2 ...
 - $\dots 1 1 2 1 1 2 2 1 1 2 \dots$
 - ... 1 1 2 1 2 2 2 1 1 2 ...
 - $\dots \ 1 \ 2 \ 1 \ 1 \ 2 \ 2 \ 1 \ 1 \ 1 \ 2 \ \dots$

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

 ... 1 1 2 1 2 2 2 1 1 2 ...
 haplotype 1

 ... 1 1 2 1 1 2 2 1 1 2 ...
 haplotype 1

 ... 1 1 2 1 2 2 1 1 2 ...
 haplotype 1

 ... 1 2 1 1 2 2 1 1 1 2 ...

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

... 1 1 2 1 2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 ... haplotype 2 ... 1 2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 2 ...

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

... 1 1 2 1 2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 2 1 1 2 ... haplotype 3

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

 ...
 1
 1
 2
 1
 1
 2
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...

... 1 2 1 1 2 2 1 1 1 2 ...

6 markers \rightarrow 3 haplotypes: data/variable reduction!

- First step: deal with the large amount of variables;
- ۲ Build haplotype blocks within HD SNP-marker sequences:

1121222112 1121122112 ... 1 1 2 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 2 ...

6 markers \rightarrow 3 haplotypes: data/variable reduction!

• Where in the sequence should we build the blocks?

3 / 13

December 11, 2012

- First step: deal with the large amount of variables;
- Build haplotype blocks within HD SNP-marker sequences:

 ...
 1
 1
 2
 1
 1
 2
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...
 ...

 ...
 1
 1
 2
 1
 1
 2
 ...
 ...

 ...
 1
 2
 1
 1
 2
 ...
 ...
 ...

 ...
 1
 2
 1
 1
 2
 ...
 ...
 ...

6 markers \rightarrow 3 haplotypes: data/variable reduction!

- Where in the sequence should we build the blocks?
- How big should a block be?

• Set LD threshold to define a haplotype block;

- Set LD threshold to define a haplotype block;
 - $D' \ge d$ between any two markers \Rightarrow Haplotype block;

- Set LD threshold to define a haplotype block;
 - $D' \ge d$ between any two markers \Rightarrow Haplotype block;
 - Threshold d varying in six values (0.25, 0.35, 0.45, 0.55, 0.65 and 0.75);

- Set LD threshold to define a haplotype block;
 - $D' \ge d$ between any two markers \Rightarrow Haplotype block;
 - Threshold d varying in six values (0.25, 0.35, 0.45, 0.55, 0.65 and 0.75);
- Our data:

- Set LD threshold to define a haplotype block;
 - $D' \ge d$ between any two markers \Rightarrow Haplotype block;
 - Threshold d varying in six values (0.25, 0.35, 0.45, 0.55, 0.65 and 0.75);
- Our data:
 - $\bullet\ 5214$ animals from the Nordic Holstein population;

- Set LD threshold to define a haplotype block;
 - $D' \ge d$ between any two markers \Rightarrow Haplotype block;
 - Threshold d varying in six values (0.25, 0.35, 0.45, 0.55, 0.65 and 0.75);
- Our data:
 - 5214 animals from the Nordic Holstein population;
 - $\approx 500k$ SNP markers.

Building Haploblocks

Building Haploblocks

Figure: Toy example - LD map between all the markers

Beatriz Cuyabano (Aarhus University)

Building Haploblocks

Figure: Toy example - Outlined haplotype blocks for $D' \ge 0.75$

Beatriz Cuyabano (Aarhus University)

Genomic Prediction using Haplotype Blocks

Table: Description of Haploblocks built based on the different D^\prime thresholds.

	D' threshold					
	0.25	0.35	0.45	0.55	0.65	0.75
Non-blocked SNPs	$3\ 513$	$5 \ 399$	7 744	$10\ 280$	$13\ 207$	$16\ 812$
# haploblocks	$55 \ 513$	62 309	$68 \ 318$	$73 \ 928$	$79\ 154$	$84\ 634$
Haploblocks var.	$338 \ 460$	$346\ 938$	$353\ 221$	$358 \ 461$	$362 \ 455$	$366\ 167$
Mean length	9	8	7	7	6	6
Max. length	80	74	78	78	78	70
Mean variants	6	6	5	5	5	4
Max. variants	18	18	16	15	13	12

Genomic Prediction - Models

Genomic Prediction - Models

• BLUP (with polygenic effect);

- BLUP (with polygenic effect);
- 4 Distribution Mixture Model (with polygenic effect): Set prior proportions 0.889, 0.1, 0.01, 0.001 to variable effects.

Figure: Correlation between predicted and true breeding values

Figure: Correlation between predicted and true breeding values

Figure: Correlation between predicted and true breeding values

 Haplotype approach presented improvement in genomic prediction from HD marker maps;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;
 - 1.1% for mastitis.

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;
 - 1.1% for mastitis.
- Next steps:

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;
 - 1.1% for mastitis.
- Next steps:
 - Select haploblocks to perform prediction haploblocks that contain the main SNP effects from the SNP models;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;
 - 1.1% for mastitis.
- Next steps:
 - Select haploblocks to perform prediction haploblocks that contain the main SNP effects from the SNP models;
 - Perform haploblocks models in an across-breed design;

- Haplotype approach presented improvement in genomic prediction from HD marker maps;
- 4 mixture models with polygenic effect have superior prediction accuracy than BLUP models;
- Improvement of prediction compared to GBLUP models:
 - 3.7% for protein;
 - 1.7% for fertility;
 - 1.1% for mastitis.
- Next steps:
 - Select haploblocks to perform prediction haploblocks that contain the main SNP effects from the SNP models;
 - Perform haploblocks models in an across-breed design;
 - Work on different building methods of haploblock to use in prediction.

Thank You!

